Triglyme-based electrolyte for sodium-ion and sodium-sulfur batteries
نویسندگان
چکیده
منابع مشابه
Sodium and sodium-ion energy storage batteries
1359-0286/$ see front matter 2012 Elsevier Ltd. A http://dx.doi.org/10.1016/j.cossms.2012.04.002 ⇑ Corresponding author. E-mail address: [email protected] (L.F. Nazar). Owing to almost unmatched volumetric energy density, Li-ion batteries have dominated the portable electronics industry and solid state electrochemical literature for the past 20 years. Not only will that continue, but they ar...
متن کاملAnode for Sodium-Ion Batteries
DOI: 10.1002/aenm.201500174 The continuous pulverization of alloy anodes during repeated sodiation/desodiation cycles is the major reason for the faster capacity decay. However, if these elements can form a compound (such as Sn 4 P 3 ) after each Na extraction, the pulverization of these elements can be partially repaired and the accumulation of pulverization can be terminated. Therefore, we ca...
متن کاملHigh-performance sodium-ion batteries and sodium-ion pseudocapacitors based on MoS(2) /graphene composites.
Sodium-ion energy storage, including sodium-ion batteries (NIBs) and electrochemical capacitive storage (NICs), is considered as a promising alternative to lithium-ion energy storage. It is an intriguing prospect, especially for large-scale applications, owing to its low cost and abundance. MoS2 sodiation/desodiation with Na ions is based on the conversion reaction, which is not only able to de...
متن کاملFrom lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries
Research devoted to room temperature lithium-sulfur (Li/S8) and lithium-oxygen (Li/O2) batteries has significantly increased over the past ten years. The race to develop such cell systems is mainly motivated by the very high theoretical energy density and the abundance of sulfur and oxygen. The cell chemistry, however, is complex, and progress toward practical device development remains hampere...
متن کاملSodium-difluoro(oxalato)borate (NaDFOB): a new electrolyte salt for Na-ion batteries.
A new electrolyte salt, sodium-difluoro(oxalato)borate (NaDFOB), was synthesized and studied, which enables excellent reversible capacity and high rate capability when used in Na/Na0.44MnO2 half cells. NaDFOB has excellent compatibility with various common solvents used in Na-ion batteries, in strong contrast to the solvent dependent performances of NaClO4 and NaPF6. In addition, NaDFOB possess...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ionics
سال: 2019
ISSN: 0947-7047,1862-0760
DOI: 10.1007/s11581-019-02878-w